
TBE INFLUENCE OF OSCILLATIONS OF THE FREE 
SURFACE OF A LIQUID ON TRE STABILITY OF 

ROTATIONAL MOTION OF A SPINNING TOP 
CONTAINING TBE LIQUID 

(VLIIANIE KOLEBANII SVOBODNOI POVERKBNOSTI ZHIDKOSTI 
NA USTOICHIVOST' VRASHCHATEL'NYKH DVIZHENII VOLCHKA, 

SODERZHASHCHEGO ZHIDKOSTI) 

PMM ~01.25, No.4, 1961, PP. 646-656 

B.A. KOSTANDIAN 
(Erivan) 

(Received April 2i, 1961) 

Problems concerning the motion of a rigid body, with a cavity filled 
with incompressible liquid, have been studied in a very general formula- 
tion by Zhukovskii [ 1 1. Chetaev [ 2 I, making use of Zhukovskii’s work, 
solved the particular problem of the stability of rotational motion of a 
projectile with a cylindrical cavity completely filled with ideal incom- 
pressible liquid. He also investigated the case when the cylindrical 
cavity has a diametral diaphragm or a cross (two orthogonal diametral 
planes). Rumiantsev [ 3.4 I considered the stability of spinning motion 
of a rigid body having a cavity completely or partially filled with in- 
compressible liquid. He posed the problem of the stability of spinning 
motion of a rigid body with liquid in relation to every variable charac- 
terizing the motion of the rigid body and to some of the variables 
characterizing the motion of the liquid. Starting from the complete 
equations of perturbed motion of the whole system, by the method of 
Liapunov and Chetaev, he obtained sufficient conditions for the stability 
of the rotational motion of the rigid body. 

Sobolev [ 6 1 studied the general theory of motion of a symmetrical 
top with a cavity completely filled with liquid. 

The papers of Moiseev [ 6,7,8 1 were devoted to the analysis of the 
case of motion of a rigid body with a partially filled cavity. Assuming 
the liquid to be ideal and incompressible, the motion of the liquid in a 
stationary vessel is potential, whilst for the case of small motions of 
the vessel about the position of equilibrium he obtained a system of 
differential equations for the motion of the system of vessel and liquid. 

Narimanov [ 9 1 derived the equations for small motions of a rigid 
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body having a cavity partially filled with liquid, and analysed the 
solutions of these equations. In another paper Narimanov [ i0 1 derived 
the equations for small perturbations of the steady rotation of a sym- 
metrical gyroscope having a cylindrical cavity partially filled with 
liquid. The problem led to an infinite system of ordinary differential 
equations with constant coefficients. 

In [ 11 I Stewartson investigated the stability of spinning motion of 
a top with a partially filled cylindrical cavity. This problem in a some- 
what different formulation was studied by the author of the present 
paper [ 12 1. Both papers consider the linearized equations of the system, 
and in the computation of the overturning moment acting on the wall at 
the side of the liquid it is assumed that the free surface of the liquid 
differs little from the unperturbed cylindrical form. The conditions of 
stability obtained by Stewartson [ 11 1 were checked experimentally. The 
description of the experiment and the recording of the results, which 
were carried out by Ward, are presented in an appendix to [ 11 1. It is 
shown that there exists a certain discrepancy between theory and experi- 
ment, although the main form of the instability, according to Ward’s 
assertion, agrees with theoretical predictions. 

As possible causes of this discrepancy, Ward considered the following 
effects: the effect of the force of gravity on the liquid filling, 
causing the axis of rotation to be different from the axis of the 
cylinder: the effect of the nonlinear terms and the effect of the forces 
of friction on the gimbal suspension. By experiment it is shown that the 
effects are so insignificant that they cannot be the cause of this dis- 
crepancy. The possibility of the free surface differing sharply from a 
cylindrical shape is not brought out in this paper [ 11 1. 

Here we study the characteristic oscillations of the free surface of 
a liquid in the cylindrical cavity of a gyroscope and their influence on 
the stability of the whole system. 

Let us consider the motion of a weighty synnnetrical gyroscope (a top 
with a fixed point of support) when the centre of mass of the gyroscope 
lies on the axis of rotation of the ellipsoid of inertia, constructed 
for the point, of support. Let the cavity be a cylinder, the axis of 
which coincides with the axis of symmetry of the gyroscope (top). In 
order to study the stability of rotational motion of the partially 
filled gyroscope we divide the problem into two parts: (a) the motion of 
the liquid in the cavity, when the gyroscope is rotating about a fixed 
axis of symmetry; (b) the influence of the liquid on the stability of 
the gyroscope. 

To solve the first part of the problem let us consider two cases: 
(1) when the velocity of intrinsic rotation of the gyroscope w is such 
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that a202 >> gc, where a is the radius of the cavity and 2c is its 
height; (2) when o is small and a2m2 << gc. 

Let us introduce a moving system of coordinates Oxyz: the z-axis is 
chosen vertically upwards whilst the axes of z and y are in a horizontal 
plane rotating about z with velocity o and form a right-handed set with 
z. Let us denote by { II*, u*, UI*] the velocities of the fluid particle 
(x, y, z) along these axes at the instant t. In the case of large velo- 
cities of rotation the oscillations arise from the action of centrifugal 
forces, in the case of small w from the action of the force of gravity. 

1. Naves on the surface of a slowly rotating liquid in a 
cylindrical vessel. Let a cylindrical vessel with a flat bottom con- 
tain liquid and rotate together with the liquid about the vertical axis 
of symmetry with angular velocity o. For relative equilibrium under the 
action only of the force of gravity, the free surface is a paraboloid of 
revolution. Let us assume that the inclination of the surface is small, 
i.e. ao2 << g, where a is the radius of the vessel. The liquid will 
rotate together with the vessel as a rigid body after a lapse of time of 
order a'/v, where v is the kinematic coefficient of viscosity of the 
liquid. Let us assume that in the relative motion the velocities are 
small, as a result of which we can discard from the equations of motion 
those terms which are of second order in the relative velocities and 
also in the force of viscosity (friction). 

The equations of motion in the moving coordinates are 

Here g is the acceleration due to gravity, F(F, F,, FZ) is the 
vector of the external body force, p is the pressure of the liquid at 
the point (x, y, z). 

We note that in the eighth chapter of [13 I some results are given 
relating to the oscillations of a horizontal layer of liquid of constant 
thickness and of variable thickness, having a shape defined by h = h,(l- 
,'/a'); the cases studied are when o= 0 and when of 0 but ao2 << g. 
Let us study the small oscillations performed by a liquid with a free 
surface under the action of the force of gravity. 

Let the xy-plane coincide with the plane of the base. Ihen in the un- 
perturbed state the thickness of the layer of liquid is a function of 
(x2 + y'), i.e. 



966 B.A. Kostandian 

h = ; $ (9 + y2) f ho (1.2) 

From the total volume of liquid and owe can easily find ha. It will 
be assumed that sufficient liquid is present so that h does not equal 
zero anywhere under the conditions of rotation (ho # O), i.e. the para- 
boloid of revolution does not cut the xy-plane. 

Let us denote by c* (x, y) the elevation of the free surface above 
the unperturbed level at the point (n, y). We obtain the equation of con- 
tinuity, calculating the flux of liquid into an elementary prism with 
the base 6x8~; neglecting second-order terms, we obtain [13 1 

x* a (u*h) a (v*h) 
-=--- -- 
dl dz dy 

Assuming that the vertical acceleration of the liquid is small in 
comparison with g, the pressure of the liquid at the point (n, y, z) is 
determined by the equation 

p = po + glJ(h + 5* - 4 (1.4) 

Here h + c* is the ordinate of the perturbed surface. It is clear 
that when [* = 0 in the unperturbed state all the equations of motion 
are satisfied with u* = II* = w* = 0 and p = p,, + pg(h - z). 

Let us consider the characteristic oscillations of the layer of liquid 
under the action of the force of gravity, i.e. in the equations of 
motion (1.1) let us set F = 0. 'Ihe functions u*, II*, w* and c* are 
sought in the form 

usi: = u (cr, y, z) /F, . . . , c* = 5 (.T, y) eiol 

It is convenient to employ cylindrical coordinates x = r cos 8, 
y = r sin 8, z = Z. 'lhe equations of horizontal motion (making use of 
the relation (1.4)) have the form [13 ] 

L 

iau-22wv= -g$: x iov -+ 2wu = - ga 

The equation of continuity in cylindrical coordinates becomes 

3 (r/m) 8 (ha) 
&jc - -rar-- 

rae 

which by virtue of (1.2) reduces to the form 
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From Equations (1.5) we find u and u 

and, substituting in (1.7) to find the function 6, we obtain 

The function <(r, e), periodic in 8, may be expanded in a Fourier 
series in eise with undetermined coefficients depending on r 

co 
(1.10) 

Substituting (1.10) in (1.9) f or each of the functions es(r), we 
obtain 

EQuation (1.11) can be put in the form 

Here 

l'he point r = 0 is a pole of p(r) and q(r), but rp(r) and r*q(r) are 
analytic in the neighborhood of r = 0; consequently, the point r = 0 is 
a regular point for the differential equation (1.12). Let us seek the 
solution of Equation (1.12) in the form of a power series, multiplied by 
a r , i.e. 

L = (;y [ 1 + 5 6, ($)“I 
n=1 

(1.13) 

where al and a2 are constant coefficients. If we define the dimension- 
less quantity r/A = T], then Equation (1.12) is 

.4) 

Let us expand the coefficients of <', and <, in series in the interval 
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The dimensionless quantity 1 will vary in the interval 0 < 7 < 1 if 
a < X or, which is the same thing, if a2a2 < 2gh,. 

Substituting rs = ~~(1 + a17 + a2q2 + . . . ) in the differential equa- 
tion (1.14) (assuming that differentiation and multiplication of the 
series are permissible) and bearing in mind the expansions (l.lS), we 
obtain a power series. Equating to zero the coefficients of successive 
powers of 7, we obtain the following system of equations: 

F (a) E a2 - s2 = 0 (1.16) 

al = 0, a2 {(a + 2)2 - s2) + 2a + 6 = 0, a3 {(a+3)2-s2} = 0, . . 
n-1 

anI@ + 4" - s2) + x ccn-m((a + n - 4 pm + q,}+apn+qn =O, . . . 
m=1 (1.17) 

Here 

PO = 1, p1 = 0, p2 = 2, pzk+l = 0, p21i+z = (- iy+*2 

qo = - 9, Q2h+l = 0, Q2k = (- i)k+‘6 [I .18) 

For each value of a from (1.16) all the coefficients aI, a2, . . . are 
determined in succession. We find that the coefficients an for odd 
powers of 7 vanish, i.e. a2k+ 1 = 0. We notice that aI - a2 = 2 s is a 
whole number, and accordingly we choose only the first exponent aI = s. 

‘Ihe second linearly independent solution of the differential equation 
contains In 1, and accordingly it will not be considered. 

Substituting a in the system (1.17), we find 

2s + 6 
” = - 2(2s I 

(3 -j- b)(lk + tl + 8) 
” ucl = -qyIjq@ + 4) (1.19) 

Then a 
and (1.18 f 

is expressed in terms of a2 and ad, and so on. From (1.17) 
we can obtain the relation between successive coefficients: 

4 (k + I) (s + Ic + 1) U&j? i- [(s + 212)2 + 8 + 4/i (s -I- IL)1 Qi = 0 (1.20) 



Stability of rotational motion of a spinning top 969 

Accordingly, we obtain a recurrence formula for the determination of 
the coefficients of each power of v. 

Let us prove the convergence of the expansion (1.13) for the actual 
values of ak(k = 1, 2, 3, . ..). 

Remembering that the coefficients of odd powers of 7 are zero, and 
making use of the relation (1.20), we obtain 

lhe series (1.13) therefore converges if (71 < 1. Accordingly, in the 
interval 171 < 1 it is permissible to differentiate and multiply the 
series (1.13) and (1.15). The solution so constructed in the form of a 
power series, namely 

(1.21) 

converges for all values of r(0 <r < a). In (1.21) the coefficients azk 
depend upon s and 6. Ihe solutions which are found must satisfy the 
boundary condition 

u = 0 when r = a (1.22) 

i.e. on the lateral surface of the cylinder the radial component of 
velocity of the liquid must vanish. Rearing in mind (1.81, (1.10) and 
(1.211, we find that the condition (1.22) reduces to the equation 

(1.23) 

Hence the frequency of oscillation of the free surface is also deter- 
mined. 

Numerical example. To find the root of Equation (1.23) in the particu- 
lar case when a/A = l/2, a table of values of f(o/o) in the range 
- 10 < u/w ,< 10 was constructed. 

The values of the function f were obtained at 160 points of the range 
(- 10, 10). The distance between two successive points was equal to l/8. 
The following results were obtained: 

when s = 0 the function f(a/o) does not change sign in the specified 
interval, i.e. there is no root; 

when s = 1 the function has roots in the intervals 
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(-$9~$), cf,+,, (5j- ,r,) 

when s = 2 the function has roots in the intervals 

(-7-+, -7$), (---i , -$), (+, +), ($, $), (2 i, 2 : ) 

2. Oscillations of the free surface of the liquid with 
large angular velocities of rotation of the container. 1. Let 
us consider oscillations of the free surface of the liquid in a cylindri- 
cal vessel which is rotating rapidly about a vertical axis. 

In the unperturbed state we shall assume rotation about the vertical 
axis of symnetry of the whole system as a rigid body, i.e. 

11,. = 0, 1Lg = )'uJ, 21: = 0 

p = $ (NJ” (r' - 6') -' ,# (z - C) + PO (2-i) 

Here ( ur, ue, uz] is the velocity of a fluid particle, p is the 
pressure, whilst p,, is the pressure of the overlying air, b is the radius 
of the free surface. In the perturbed state the radius of the free sur- 
face will be denoted by b + r * (0, 2). Let us assume that during the per- 
turbed motion the velocity of the relative motion does not influence the 
pressure p; let us determine p from the static conditions, taking account 
of the change of the free surface: 

p = po + f pw2 (r2 - b2) - !,w2bt* (0: z) + pg (z - c) (2.2) 

If we write down the equation of relative motion in cylindrical co- 
ordinates and substitute the value of p from (2.2), we obtain 

Here (u*, II*, UJ*) are the components of velocity in cylindrical co- 
ordinates. 

We obtain the equation of continuity by calculating the flux of fluid 
into an elemental pyramidal volume formed by the coordinate planes z, 
z + 6z, 8, 0 + 68, the surface of the cavity and the free surface. 
Neglecting terms of the second order, we obtain 

(2.4) 

Hence 
(2.5) 
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Here r0 is the mean radius of the horizontal section, assuming the 
cavity to have the form of a body of revolution; h is the thickness of 
the layer of liquid. 'Ibe values of r0 and h are taken from the unper- 
turbed state. 

The functions u*, v*, W* and <* will be sought in the form 

u* = @t )... (2.6) 

Substituting (2.6) in the equation of motion (2.3) and neglecting the 
forces F,, Fe, Fz, we obtain 

iou - 2wv = 0, ac iav + 2wu = w2 -~ a; 
ae ' 

iaw = w2b Z (2.7) 

Hence 
7' = ___ 3 ice” 0”b a; 

fd-d au 9 
w3-- 

1B a3 
(2.S) 

In the general case, when the cavity is a body of revolution, the 
axis of symmetry of which coincides with the axis of rotation of the 
container, the thickness of the layer of liquid in the unperturbed state 
depends only on the coordinate z. The equation determining the form of 
the free surface in the perturbed state can be obtained by substituting 
(2.8) in (2.5) and remembering that h = h(z) and r,, = r,,(z). It will ' 
have the form 

Let us consider the case of a cylindrical cavity with radius a and 
height 2c. In this case h and rO do not depend on z, and the equation 
describing the variation of the free surface of the liquid is 

(2.9) 

The function 5 must satisfy the following boundary condition: 

XJi3z = 0 when Z= +C - (2.10) 

i.e. the w-component of velocity of the liquid particles at the ends of 
the cylinder must vanish. In order to show the dependence of [ on 8 let 
us expand c as a Fourier series in cosines and sines of the azimuth 0, 
or, which is the same thing, in e ise, where s = 0, *l, *2, . . . . We ob- 
tain a series, the terms of which have the form fs(z)eise. 

Substituting the expansion of 5 iysquation (2.9) and equating to 
zero the coefficient of each power e , we obtain 
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(2.11) 

Let us write the general solution of Equation (2.11) in the form 

(2.12) 

Here As is an arbitrary constant. 

Possible values of o are determined from the condition (2.10), i.e. 

sin (&PC + a) = 0 (2.13) 

Hence, to determine the frequency of oscillation of the free surface 
we obtain the formula 

Let us introduce the following notation: 

Then Equation (2.14) takes the form 

(2.14) 

c&J(h) Es ha- h [4 + s2 ( & - 1) f- y xq ] -;- y ,x = 0 (2.16) 

In Equation (2.16) the free term is positive, whilst at the minimum 
point 

A-1 sy-yxq 
3 

(2.l’i) 

the value of the function +(A,) is less than or equal to zero, i.e. 

<- (2 - & k%2Xq)2 < 0 

Hence it follows that all the roots of Equation (2.16) are real and 
positive for any k, s, 7 and K. Consequently, all four roots of Equation 
(2.14) are real. 

In the case s = 0 the free surface has the form of a body of revolu- 
tion. and for u we obtain 
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When k = 0 the free surface does not change in the direction of the 
axis of the cavity, and for u we obtain 

1 1 
-- - 

In the general case u is determined from the formula 

In this way, the frequencies of characteristic oscillations of the 
liquid in a cylindrical cavity are determined as a function of its full- 
ness 7. 

For characteristic oscillations of the free surface of a liquid we 
have 

5' (O,z, 2) = A, cos (p-z + E) exp [i (Se + at)] (2.19) 

For each fixed value of t the equation of the free surface r = b + 
r* (0, 2, t) takes the 
the case when s = 0 or 
k = 0. In [14 1 Mala- 
shenko describes ex- 
perimental investiga- 
tions relating to 
bodies of revolution. 
In particular, he 
photographed a rotat- 
ing transparent body 
containing liquid in 
a cavity, i.e. he 
captured an instan- 
taneous picture of 
the motion of the 
free surface of the 
liquid. 

The form of the 
free surface for a 
fixed value of t, de- 
termined according to 
Formula (2.191, is 
verified by the 
picture of the free 

form of a cylinder with a skewed axis, except in 

Fig. 1. 
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surface in the model with the transparent cylindrical cavity introduced 
in Malashenko’ s paper. 

2. By way of illustration, we shall present the results of a computa- 
tion (on the electronic computing machine “Erivan”) of the roots of 

Equation (2.14) for three cylindrical cavities defined by the parameters 

8 

6 

Fig. 2.. 

a/c = l/3, 2/3, 1. In each case the 
roots were calculated for values of 
k = 0, 1. 2, 3, 4; s = 0, 1, 2, 3, 
4. 5, 6, whilst 9 varies with incre- 
ment AT = 0.05, i. e. 0 = 0.05 i. 
where i takes integral values from 1 
to 19. 

From the computed values we con- 

structed graphs showing the depend- 
ence of the absolute values of the 
frequency of oscillation u on the 
filling coefficient 7, for various 
values of k and S. 

In Figs. 1 and 2 we show this de- 
pendence for both values of u from 
(2.20) in the case a/c = l/3. Figure 
1 refers to the smaller values (the 
minus sign in front of the square 

bracket), whilst Fig. 2 refers to the larger (plus sign). The same de- 
pendence for the cases a/c = 2/3 and a/c = 1 are displayed in Figs. 3, 
4 and 5, 6, respectively. 

3. 'Ihe influence of the liquid oscillations on the sta- 
bility of the gyroscope. In the theory of the gyroscope [ 15 ] it is 

well known that the most general form of motion of a weighty symmetric 
gyroscope, possessing great intrinsic angular momentum, is a pseudo- 
regular precession about a vertical line passing through the point of 
support. For a fast gyroscope with pseudo-regular precession the velo- 
city of nutation (the velocity with which the axis of the top rotates 
about the axis of angular momentum) does not depend upon the overturning 
moment and is directly proportional to the angular momentum. For a rapid 
intrinsic rotation the following relation is approximately true: 
on = oC/A, where o is the intrinsic angular velocity, on is the angular 
velocity of nutation, A and C are respectively the equatorial and axial 
moments of inertia of the gyroscope. If  the gyroscope is elongated the 
nutation is slower, whilst if it is flattened it is faster than the in- 
trinsic rotation of the gyroscope, and moreover the direction of rota- 
tion coincides with the direction of the intrinsic rotation. From the 
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relation on = oA/C it follows that the ratio of the velocity of nutation 
to the velocity of the intrinsic rotation remains constant for each 

gyroscope. A gyroscope with a 
cylindrical cavity partially filled 
with liquid becomes unstable for 
certain filling ratios and remains 
stable for other filling ratios 111, 
15 1. Let us study the dependence of 

0 u 6 12 16 i 

Fig. 3. 

8 

6 

Fig. 4. 

the stability of the gyroscope on the amount of liquid filling. 

For the undisturbed state of the system - rigid container and liquid 
- we assume steady rotation about a vertical axis as a rigid body. For 
small relative motions of the liquid it increases the overturning moment 
but does not influence the frequency of nutation of the gyroscope (the 
wobbling of the axis of the body), since the frequency of nutation does 
not depend on the overturning moment. Consequently, if the liquid in the 
cavity is not strongly perturbed, the ratio on/o remains constant. Assum- 
ing that the liquid is acted on only by the nutational oscillations of 
the system, the appearance of instability can be explained in the follow- 
ing way. If  for a given filling ratio 71 the frequency of characteristic 
oscillations of the free surface of the liquid coincides with the 
frequency of nutation, then there occurs a strong perturbation of the 
free surface, which assumes the shape of a cylinder with a skewed axis, 
i.e. on the free surface of the liquid there appears an asyrnnetric wave 
motion, after which the stable state of the gyroscope is upset. 
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In order to verify the stability of the gyroscope with a given liquid 
filling ratio, let us compare the values of u/o, calculated according to 

. 
2.0 

6 
3 

Formula (2.14)) with the ratio on/o. 
If  at least one value of u/w co- 
incides with on/w = C/A or becomes 
sufficiently close to this number, 
then for such a filling ratio the 
gyroscope loses stability. 

.l. 6 

K 

I I”, ,,/I Ll I- 
1 0.8 

Fjg. 5. 

Fig. 6. 

Such an approach is vindicated by the experiment carried out by Ward 
[ 11 1. In these experiments the dimensions of the cavity (in inches) 
were 2a = 1 l/8 and 2c = 3 3/8, i.e. a/c = l/3, the ratio of the nuta- 
tional frequency of the gyroscope to its rotational frequency o,,/o = 
A/C = 0.112, whilst the velocity of rotation o = 6000 revolutions per 
minute. The gyroscope was found to be unstable for filling ratios between 
0.63 and 0.70. 

As is clear from Fig. 1. the graph of the function ~(?)/a with s = 6 
and k = 1 in the interval 0.57 < 7 < 0.68 and in the vicinity of 7 = 0.20 
just about coincides with the line u/o = 0.112 (the bold horizontal line 
on Fig. 1). When k = 1 this line also cuts the curves s = 1. 2, 3, 4, 5, 
but for 7 < 0.15. The filling coefficient 7 = 0.15 in the experiments 
[ 11 1 corresponds to 6 gm of liquid, whilst the rigid part (the container) 
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of the gyroscope had a greater mass; consequently, when 7 < 0.15 the 
liquid could not influence the stability of the container. Again at two 
points, namely at 7 = 0.80 the curve s = 5 when k = 1, and at 1 = 0.89 
the curve s = 4 when k = 1 intersect the specified straight line, but at 
an appreciable angle. In order that instability of the gyroscope be ob- 
served, the filling coefficient must coincide exactly with the value 

I = 0.80 or 7 = 0.89, since even for fillings very close to these values 
the corresponding values of u/w differ considerably from 0.112. 

In the cases a/c = 2/3 and a/c = 1 (Figs. 3 and 5) the curves of 
frequency do not intersect the straight line a/o = 0.112, and the values 

of a/o increase with increasing a/c. 
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